Faigle-Kern の双対貪欲算法とその帰結

筑波大学社会工学系 安藤 和敏

日本応用数理学会平成12年度年会 2000.10.6

Outline of this Talk

- 1. Review of submodular system
- Review of submodular functions on antichains and Dual Greedy Algorithm
- 3. Lovász extension
- 4. An algorithm for testing a vector for being an extreme point
- 5. Concluding Remarks

Submodular Systems

 $P = (E, \preceq)$: partially ordered set (poset). (n = |E|.)

 $\mathcal{I}(P) = \text{the set of ideals of } P.$ $I\subseteq E$ is an ideal of $P\Leftrightarrow (y\preceq x\in I\Rightarrow y\in I)$.

and \cap . **Remark**: $\mathcal{I}(P)$ forms a distributive lattice with lattice operations \cup

• $f: \mathcal{I}(P) \to \mathbf{R}$ is submodular \Leftrightarrow

$$\forall A, B \in \mathcal{I}(P): f(A) + f(B) \ge f(A \cup B) + f(A \cap B).$$

Validity of Greedy Algorithm for solving

$$\left| \begin{array}{ll} \max & \sum \{w(e)x(e) \mid e \in E\} \\ \text{s.t.} & x(X) \leq f(X) \end{array} \right. \\ \left(X \in \mathcal{I}(P) \right),$$
 where $x(A) = \sum_{e \in A} x(e)$.

 $f:\mathcal{I}(P) \to \mathbf{R}$ is submodular iff its Lovász extension is convex.

Existence of polynomial time algorithm for minimizing f.

• TDIity of $x(X) \leq f(X)$ $(X \in \mathcal{I}(P))$.

Intersection Theorem

:

Submodular Functions on Antichains

- $A \subseteq E$ is an antichain of $P = (E, \preceq)$ if $\forall a, b \in A : a \preceq b \Rightarrow a = b$.
- $\mathcal{A}(P)$ the set of antichains of P.
- For $f: \mathcal{A}(P) \to \mathbf{R}$ define

$$\mathsf{P}(f) = \{x \mid x \in \mathbf{R}^E, \forall A \in \mathcal{A}(P) : x(A) \le f(A)\}.$$

Validity of Dual Greedy Algorithm

(P)
$$\max_{e \in E} \sum \{w(e)x(e) \mid e \in E\}$$

s.t. $x(A) \le f(A)$ $(A \in \mathcal{A}(P))$

P: rooted forest $+ f: \mathcal{A}(P) \to \mathbf{R}$: submodular [Faigle and Kern (1996)]

 $f:\mathcal{A}(P) o \mathbf{R}$: submodular and monotone [Faigle and Kern (2000)]

 $f: \mathcal{A}(P) \to \mathbf{R}: b$ -submodular [Krüger (2000)]

Ideals and Antichains

ullet The ideal generated by $A\in \mathcal{A}(P)$

$$\operatorname{id}(A) = \{ y \mid y \in E, \exists x \in A : y \leq x \} \quad \in \mathcal{I}(P)$$

ullet For $I\in \mathcal{I}(P)$,

$$\max(I) = \{x \mid x \in I, \not\exists y \in I : x \prec y\} \in \mathcal{A}(P).$$

 $\mathcal{A}(P)$ are one-to-one correspondence. Each of them is the inverse of the other. ⊔ **Proposition**: The mappings id: $\mathcal{A}(P) \to \mathcal{I}(P)$ and max: $\mathcal{I}(P) \to$

 $(\mathcal{I}(P); \cup, \cap) \cong (\mathcal{A}(P); \vee, \wedge), \text{ where }$ **Corollary**: The bijections induce lattice operations on $\mathcal{A}(P)$: $A \vee B = \max(\operatorname{id}(A) \cup \operatorname{id}(B)),$ $A \wedge B =$ $\max(\operatorname{id}(A) \cap \operatorname{id}(B))$

and partial order \preceq on $\mathcal{A}(P)$ as

 $\forall A, B \in \mathcal{A}(P) : A \leq B \Leftrightarrow id(A) \subseteq id(B). \square$

Dual Greedy Algorithm

 $f: \mathcal{A}(P) \to \mathbf{R}$ is submodular $\Leftrightarrow A, B \in \mathcal{A}(P)$: $f(A) + f(B) \ge f(A \lor B) + f(A \land B).$

The polyhedron associated with $f: \mathcal{A}(P) \to \mathbf{R}$ $\mathsf{P}(f) = \{x \mid x \in \mathbf{R}^E, \forall A \in \mathcal{A}(P) \colon x(A) \le f(A)\}.$

ullet LP over P(f) and its dual

$$(P) \begin{vmatrix} \max & \sum \{w(e)x(e) \mid e \in E\} \\ \text{s.t.} & x(A) \le f(A) & (A \in \mathcal{A}(P)) \end{vmatrix}$$

$$(D) \begin{vmatrix} \min & \sum \{f(A)y(A) \mid A \in \mathcal{A}(P)\} \\ \text{s.t.} & \sum \{y(A) \mid e \in A \in \mathcal{A}(P)\} = w(e) & (e \in E), \\ y(A) \ge 0 & (A \in \mathcal{A}(P)) \end{vmatrix}$$

$$\begin{pmatrix} e_1 & e_2 & e_3 & \cdots & e_n \\ A_1 & 1 & 0 & \cdots & 0 \\ A_2 & * & 1 & 0 & \cdots & 0 \\ \vdots & * & * & 1 & \cdots & \vdots \\ A_n & * & * & \cdots & 1 \end{bmatrix} \begin{bmatrix} x(e_1) \\ x(e_2) \\ \vdots \\ x(e_n) \end{bmatrix} = \begin{bmatrix} f(A_1) \\ f(A_2) \\ \vdots \\ f(A_n) \end{bmatrix}$$

where each row is the characteristic vector χ_{A_i} of A_i .

For $X \subseteq E$ define the characteristic vector $\chi_X : E \to \{0,1\}$ by $\chi_X(e) = \begin{cases} 1 & \text{if } e \in X, \\ 0 & \text{otherwise.} \end{cases}$

Lemma: y^* is feasible for (D). \square

Algorithm 1 Dual Greedy (Faigle and Kern(1996))

1:
$$y^* \leftarrow 0$$
.

- 2: for i = n downto 1 do
- 3: Choose $e_i \in \max(E)$ such that $w(e_i) = \min\{w(e) \mid e \in \max(E)\}.$
- 4: $A_i \leftarrow \max E$.
- 5: $y^*(A_i) \leftarrow w(e_i)$.
- $w(e) \leftarrow w(e) w(e_i) \quad (e \in \max(E)).$
- $\{w(e) \text{ is kept nonnegative and so is } y^*.\}$
- 8: $E \leftarrow E \{e_i\}$.
- 9: end for
- 10: Define x^* as the unique solution of the system

$$x(A_i) = f(A_i) \quad (i = 1, \dots, n)$$

of equations.

11: $\{x^* \text{ and } y^* \text{ satisfies complementary slackness.} \}$

and $f: \mathcal{A}(P) \to \mathbf{R}_+$, then $x^* \in \mathsf{P}(f)$ is feasible for (P), and hece, Dual Greedy Algorithm is valid for any $w: E \to \mathbf{R}_+$. **Theorem** (Faigle and Kern 1996): If $P = (E, \preceq)$ is a rooted forest

rithm is valid for any $w: E \to \mathbf{R}_+$. poset and f is submodular and monotone, then Dual Greedy Algo-**Theorem** (Faigle and Kern 2000): Let $P = (E, \preceq)$ be an arbitrary

Submodularity in Krüger's sense

• $f: \mathcal{A}(P) \to \mathbf{R}$ $\not \supset$ b-submodular $\Leftrightarrow \forall A, B \in \mathcal{A}(P)$:

$$f(A) + f(B) \ge f(A \lor B) + f(A \sqcap B),$$

where

$$A \sqcap B = (A \land B) \cap (A \cup B).$$

submodularity and b-submodularity are equivalent **Remark**: If P is a rooted forest, we have $A \land B = A \sqcap B$, and hence,

 $w: E \to \mathbf{R}_+$. \sqcup $f:\mathcal{A}(P) \to \mathbf{R}$ b-submodular, Dual Greedy Algorithm is valid for each Theorem (Krüger 2000): For any poset

is b-submodular. ⊔ Dual Greedy Algorithm is valid for each $w: E \to \mathbf{R}_+$ if and only if f **Corollary**: Let P be an arbitrary poset. For a function $f: \mathcal{A}(P) \to \mathbf{R}$

The Lovász extension

Lemma: For each $w: E \to \mathbf{R}_+$, there uniquely exists a chain

$$C: A_1 \prec A_2 \prec \cdots \prec A_k$$

of nonempty antichains of P and $\lambda_i>0$ $(i=1,\cdots,k)$ such that

$$w = \lambda_1 \chi_{A_1} + \lambda_2 \chi_{A_2} + \dots + \lambda_k \chi_{A_k}, \tag{1}$$

where $k \geq 0$.

Lovász extension

Let $P=(E,\preceq)$ be a poset and consider an arbitrary function $f\colon \mathcal{A}(P) o$

R. Define

$$\widehat{f}(w) = \sum_{i=1}^{k} \lambda_i f(A_i), \tag{2}$$

where w has the uniquely represented as (1).

if f is b-submodular. \square Theorem: The Lovász extension $\widehat{f} \colon \mathbf{R}_+^E o \mathbf{R}$ is convex if and only

Algorithm for testing a vector for being an extreme point

and only if there exists a chain **Theorem** (Krüger 2000): $x \in \mathbf{R}^E$ is an extreme point of $\mathsf{P}(f)$ if

$$C:\emptyset = A_0 \prec A_1 \prec \cdots \prec A_{n-1} \prec A_n = \max(E)$$

of antichains such that $x(A_i) = f(A_i)$ for $i = 1, \dots, n$. \square

- $A \leftarrow \emptyset$.
- while $\exists B \in \mathcal{A}(P)$ s.t. B covers A and x(B) = f(B) do $A \leftarrow B$.

Lemma: Let $A \in \mathcal{A}(P) - \{\max(E)\}$. Then, $A \prec B$ if and only if $B = A \lor e$ for some $e \in \min(E - \mathrm{id}(A))$. \square

such that $x(A \lor e) = f(A \lor e)$. \square $\mathcal{A}(P)-\{\max(E)\}\$ with x(A)=f(A) there exists an $e\in\min(E-\mathrm{id}(A))$ **Lemma**: Suppose that x is an extreme point of P(f). For each $A \in$

Theorem: The following algorithm is valid. \Box

Algorithm 2 Extreme

Require: $x \in \mathbb{R}^E$.

Ensure: YES if x is an extreme point of P(f), NO otherwise.

1: $A \leftarrow \emptyset$.

2: **while** $\exists e \in \min(E - \mathrm{id}(A))$ such that $x(A \lor e) = f(A \lor e)$ **do**

3: $A \leftarrow A \lor e$.

4: end while

5: if $A = \max(E)$ then

6: return YES.

7: else

8: return NO.

9: end if

Conclusion and Remarks

- Characterization by the validity of Dual Greedy Algorithm.
- TDIity.
- Lovász extension.
- 0 Polynomial time algorithm for b-submodular function minimization.
- Combinatorial Polynomial time algorithm for testing a vector for being a extreme point.

 \circ Intersection Theorem \longrightarrow holds if P is a rooted forest (Faigle and Kern (2000)).

• Intersection of $\mathsf{P}(f)$ and a box.

jishige (2000)]. Representation of $\mathsf{P}(f)$ by a submodular flow polyhedron [Fu-