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Outline of this Talk

1. Review of submodular system

2. Review of submodular functions on antichains and Dual Greedy
Algorithm

3. Lovasz extension

4. An algorithm for testing a vector for being an extreme point

5. Concluding Remarks



Submodular Systems

e P = (F,=x): partially ordered set (poset). (n = |E|.)
a C

N\

b

e [JCFEFisanidealof P& (y<xe€l=y€el).
Z(P) = the set of ideals of P.

Remark: Z(P) forms a distributive lattice with lattice operations U
and N.

e :Z(P) — R is submodular <

VA,Be€ZL(P): f(A) + f(B) > f(AUB) + f(AN B).



e Validity of Greedy Algorithm for solving
max > {w(e)z(e) |e € E}

s.t.  z(X) < f(X) (X € Z(P)),
where x(A) = > .cax(e).
e :Z(P) — R is submodular iff its Lovasz extension is convex.
e EXistence of polynomial time algorithm for minimizing f.

e TDIity of z(X) < f(X) (X € Z(P)).

e Intersection Theorem



Submodular Functions on Antichains

e AC F is an antichain of P = (E,=X) ifVa,b€ A:a <b= a =10.
e A(P) the set of antichains of P.

e For f: A(P) — R define

P(f) ={z|z e RY VA € A(P): z(4) < f(A)}.



Validity of Dual Greedy Algorithm

max » {w(e)z(e) |e € E}

(P)
s.t. z(A) < f(A) (A € A(P))

e P: rooted forest + f: A(P) — R: submodular [Faigle and Kern
(1996)]

e /: A(P) — R: submodular and monotone [Faigle and Kern (2000)]

o f: A(P) — R: b-submodular [Kriiger (2000)]



Ideals and Antichains

e The ideal generated by A € A(P)

id(A) ={y|lye E,3x € A:y <z} €ZI(P).

e For I ¢ Z(P) ,
max(l) ={x|ze€l,Aye l:x <y} € A(P).
Proposition: The mappings id: A(P) — Z(P) and max:Z(P) —

A(P) are one-to-one correspondence. Each of them is the inverse
of the other. ]
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Corollary: The bijections induce lattice operations on A(P):

(Z(P);u,Nn) = (A(P);V,N), where

AV B
ANB

max(id(A) Uid(B)),
max(id(A) Nid(B)).



and partial order < on A(P) as

VA,Bc A(P):A<B & id(A) Cid(B).D
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Dual Greedy Algorithm

o 1 A(P) — R is submodular & A,B ¢ A(P):
fCA) + f(B) 2 f(AV B) + f(AA B).

e The polyhedron associated with f: A(P) - R
P(f) ={z |z € R¥,VA € A(P):z(A) < f(A)}.

e LP over P(f) and its dual

max » {w(e)z(e) |e € E}

s.t. z(A) < f(A) (Ae A(P))

min S7{f(A)y(A) | A € A(P)}

(D) ]st. ) {y(A)|e€ Ac A(P)} =w(e) (e€ E),
y(4) >0 (A € A(P))

(P)
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where each row is the characteristic vector x4, of A;.

For X C FE define the characteristic vector xx: E — {0,1} by

XNAmvHAH if e € X,

0O otherwise.

Lemma: y* is feasible for (D). []



Algorithm 1 Dual Greedy (Faigle and Kern(1996))

1. y* <« 0.

2: for : = n downto 1 do

3: Choose e; € max(FE) such that
w(e;) = min{w(e) | e € max(F)}.
A; <+ Mmax E.
y*(A4;) < w(e;).
w(e) < w(e) —w(e;)) (e € max(E)).
{w(e) is kept nonnegative and so is y*.}
E +— FE — Amsw

end for

10: Define z* as the unique solution of the system

z(4;) = f(A4) (@G=1,---,n)

© 0o N o o kK

of equations.
11: {x* and y* satisfies complementary slackness.}




Theorem (Faigle and Kern 1996): If P = (FE, <) is a rooted forest
and f: A(P) — R4 , then x* € P(f) is feasible for (P), and hece,
Dual Greedy Algorithm is valid for any w: E — R.

Theorem (Faigle and Kern 2000): Let P = (FE,=<) be an arbitrary
poset and f is submodular and monotone, then Dual Greedy Algo-
rithm is valid for any w: E — R .
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Submodularity in Kruger’'s sense

o 1 A(P) — R 7 b-submodular
< VA, B € A(P):

F(A) + f(B) > f(AV B) + f( 2

where

ANMB=(AANB)N(AUB).

Remark: If P is a rooted forest, we have ANB = AT B, and hence,
submodularity and b-submodularity are equivalent.

Theorem (Kriiger 2000): For any poset P, if
f: A(P) — R b-submodular, Dual Greedy Algorithm is valid for each

Corollary: Let P be an arbitrary poset. For a function f: A(P) — R
Dual Greedy Algorithm is valid for each w: E — R4 if and only if f
is b-submodular. U



The |LLovasz extension

Lemma: For each w: E — W+‘ there uniquely exists a chain
C:A]1 < Apx <.+ < A
of nonempty antichains of P and \; >0 (¢ =1,---,k) such that

w = A1xA; T Aoxa, + -+ Apxa, (1)
where k > 0. U

e Lovasz extension
Let P = (F, <) be a poset and consider an arbitrary function f: A(P) —
R. Define

k
flw) =Y Nf(Ad), (2)
=1
where w has the uniquely represented as (1).

Theorem: The Lovasz extension f: Wm_w. — R is convex if and only
if f is b-submodular. L



Algorithm for testing a vector for being an extreme point

Theorem (Kriiger 2000): =z € R¥ is an extreme point of P(f) if
and only if there exists a chain

CO=Ag<A1 <+ <A, 1<A,=max(F)
of antichains such that x(A;) = f(4;) fori=1,.---,n. U

ac

ad c o A+ 0.
e while 3B ¢ A(P) s.t. B covers A
ab d and z(B) = f(B) do A « B.
b d

A(P) 0



Lemma: Let A € A(P) — {max(E)}. Then, A <- B if and only if
B = AVe for someeec min(E —id(A)). [

Lemma: Suppose that x is an extreme point of P(f). For each A €
A(P)—{max(FE)} with z(A) = f(A) there exists ane € min(E—id(A))
such that x(AVve) = f(Ave). U

Theorem: The following algorithm is valid. U



Algorithm 2 Extreme

Require: z ¢ RE.
Ensure: YES if z is an extreme point of P(f), NO otherwise.

1:
2:

© o No 0 how

A« 0.

while Je € min(E — id(A)) such that z(Ave) = f(AVe) do

A+ AVe.

end while

iIf A= max(F) then
return YES.

else
return NO.

end if
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Conclusion and Remarks

e Characterization by the validity of Dual Greedy Algorithm.

o 1 DlIity.

e Lovasz extension.

o Polynomial time algorithm for b-submodular function minimiza-
tion.

e Combinatorial Polynomial time algorithm for testing a vector for
being a extreme point.



o Intersection Theorem — holds if P is a rooted forest (Faigle
and Kern (2000)).

e Intersection of P(f) and a box.

e Representation of P(f) by a submodular flow polyhedron [Fu-
jishige (2000)].



