データ解析

http://coconut.sys.eng.shizuoka.ac.jp/data/

静岡大学工学部 安藤和敏

2006.01.18

第4章 Excelで学ぶ因子分析

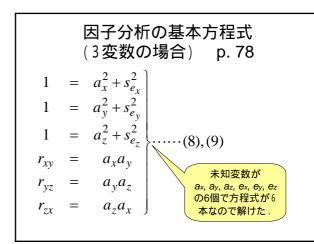
4 - 1 1因子モデルから学ぶ因子分析の考え 方

4-2 1因子モデルから学ぶ主因子法

4 - 3 SMCモデルで共通性を推定

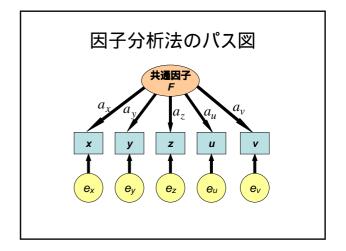
4-4 1因子モデルから学ぶ反復主因子法

4-2 1因子モデルから学ぶ主因子分 析



因子分析のデータ (変数が5個の場合)

No	変数 x	変数 y	変数 z	変数 u	変数 ٧
1	<i>x</i> ₁	<i>y</i> ₁	<i>z</i> ₁	<i>u</i> ₁	<i>v</i> ₁
2	x ₂	y ₂	z ₂	u_2	<i>V</i> ₂
:	÷	÷	:	:	÷
i	Xi	Уi	Z _i	u _i	Vi
:	::		:	:	÷
n	x _n	Уn	z _n	u _n	v _n



因子分析のモデル (5変数の場合)

$$x = a_x F + e_x$$

$$y = a_y F + e_y$$

$$z = a_z F + e_z$$

$$u = a_u F + e_u$$

$$v = a_v F + e_v$$

仮定1

3変数のときの同様に、「共通因子と独自因子は、 互いに無相関(p.19)である」と仮定する.

$$s_{Fe_x} = s_{Fe_y} = s_{Fe_z} = s_{Fe_u} = s_{Fe_v} = 0,$$

$$s_{e_x e_y} = s_{e_x e_z} = s_{e_x e_u} = s_{e_x e_v} = 0,$$

$$s_{e_y e_z} = s_{e_y e_u} = s_{e_y e_v} = 0,$$

$$s_{e_7 e_u} = s_{e_7 e_v} = 0$$

$$s_{e_{u}e_{v}} = 0$$

仮定2

3変数のときの同様に, x, y, z, u, v, F は標準化されていると仮定する.

$$s_F^2 = s_x^2 = s_y^2 = s_z^2 = s_u^2 = s_v^2 = 1,$$

$$s_{xy} = r_{xy}, s_{xz} = r_{xz}, s_{xu} = r_{xu}, s_{xv} = r_{xv},$$

$$s_{yz} = r_{yz}, s_{yu} = r_{yu}, s_{yv} = r_{yv},$$

$$s_{zu} = r_{zu}, s_{zv} = r_{zv},$$

$$s_{uv} = r_{uv}$$

因子分析の基本方程式 (5変数の場合)

$$1 = a_x^2 + s_{e_x}^2,$$

$$1 = a_y^2 + s_{e_y}^2,$$

$$1 = a_z^2 + s_{e_z}^2,$$

$$1 = a_u^2 + s_{e_u}^2,$$

$$1 = a_v^2 + s_{e_v}^2,$$

因子分析の基本方程式(続き) (5変数の場合)

$$r_{xy} = a_x a_y, r_{yu} = a_y a_u,$$
 $r_{xz} = a_x a_z, r_{yv} = a_y a_v,$
 $r_{xu} = a_x a_u, r_{zu} = a_z a_u,$
 $r_{xv} = a_x a_v, r_{zv} = a_z a_v,$
 $r_{yz} = a_v a_z, r_{uv} = a_u a_v.$

因子分析の基本方程式

未知変数の数が10であるのに対して,方程式の数は15個である.

3 変数のときにように,代入によって解くことはできない.

因子分析の基本方程式

基本方程式(1)は行列を用いて,以下のように表すことができる.

$$\begin{bmatrix} 1 & r_{xy} & r_{xz} & r_{xu} & r_{xy} \\ r_{xy} & 1 & r_{yz} & r_{yu} & r_{yy} \\ r_{xz} & r_{yz} & 1 & r_{zu} & r_{zy} \\ r_{xu} & r_{yu} & r_{zu} & 1 & r_{uv} \\ r_{xv} & r_{yv} & r_{zv} & r_{uv} & 1 \end{bmatrix} = \begin{bmatrix} a_x^2 + s_{e_x}^2 & a_x a_y & a_x a_z & a_x a_u & a_x a_v \\ a_x a_y & a_y^2 + s_{e_y}^2 & a_y a_z & a_y a_u & a_y a_u \\ a_x a_z & a_y a_z & a_z^2 + s_{e_z}^2 & a_z a_u & a_z a_v \\ a_x a_u & a_y a_u & a_z a_u & a_u^2 + s_{e_u}^2 & a_u a_v \\ a_x a_v & a_y a_v & a_z a_v & a_u a_v & a_v^2 + s_{e_v}^2 \end{bmatrix}$$

$$\dots \dots (2)$$

(ちなみに, 左辺はx,y,z,u,vの相関行列(p. 21).)

共通性の推定

$$\begin{vmatrix} 1 - s_{e_x}^2 & r_{xy} & r_{xz} & r_{xu} & r_{xv} \\ r_{xy} & 1 - s_{e_y}^2 & r_{yz} & r_{yu} & r_{yv} \\ r_{xz} & r_{yz} & 1 - s_{e_z}^2 & r_{zu} & r_{zv} \\ r_{xu} & r_{yu} & r_{zu} & 1 - s_{e_u}^2 & r_{uv} \\ r_{xv} & r_{yv} & r_{zv} & r_{uv} & 1 - s_{e_u}^2 & r_{uv} \end{vmatrix} = \begin{vmatrix} a_x^2 & a_x a_y & a_x a_z & a_x a_u & a_x a_v \\ a_x a_y & a_y^2 & a_y a_z & a_y a_u & a_y a_v \\ a_x a_z & a_y a_z & a_z^2 & a_z a_u & a_z a_v \\ a_x a_u & a_y a_u & a_z a_u & a_u^2 & a_u a_v \\ a_x a_v & a_y a_v & a_z a_v & a_u a_v & a_v^2 \end{vmatrix}$$

左辺の対角成分を,適当な数

$$0 \le h_x^2, h_y^2, h_z^2, h_u^2, h_y^2 \le 1$$

で推定する.

$$1-s_{e_x}^2=h_x^2, 1-s_{e_y}^2=h_y^2, 1-s_{e_z}^2=h_z^2, 1-s_{e_u}^2=h_u^2, 1-s_{e_v}^2=h_v^2$$

共通性の推定

$$\begin{bmatrix} h_x^2 & r_{xy} & r_{xz} & r_{xu} & r_{xv} \\ r_{xy} & h_y^2 & r_{yz} & r_{yu} & r_{yv} \\ r_{xz} & r_{yz} & h_z^2 & r_{zu} & r_{zv} \\ r_{xu} & r_{yu} & r_{zu} & h_u^2 & r_{uv} \\ r_{xv} & r_{yv} & r_{zv} & r_{uv} & h_v^2 \end{bmatrix} = \begin{bmatrix} a_x^2 & a_x a_y & a_x a_z & a_x a_u & a_x a_v \\ a_x a_y & a_y^2 & a_y a_z & a_y a_u & a_y a_v \\ a_x a_z & a_y a_z & a_z^2 & a_z a_u & a_z a_v \\ a_x a_u & a_y a_u & a_z a_u & a_u^2 & a_u a_v \\ a_x a_v & a_y a_v & a_z a_v & a_u a_v & a_v^2 \end{bmatrix}$$

$$\cdots (5)$$

因子決定行列

$$R_F = \begin{bmatrix} h_x^2 & r_{xy} & r_{xz} & r_{xu} & r_{xv} \\ r_{xy} & h_y^2 & r_{yz} & r_{yu} & r_{yv} \\ r_{xz} & r_{yz} & h_z^2 & r_{zu} & r_{zv} \\ r_{xu} & r_{yu} & r_{zu} & h_u^2 & r_{uv} \\ r_{xv} & r_{yv} & r_{zv} & r_{uv} & h_v^2 \end{bmatrix}$$

を因子決定行列と呼ぶ.

対称行列のスペクトル分解

 R_F の固有値を $_1$ > $_2$ > $_3$ > $_4$ > $_5$ とし, $_{1}$ $_{2}$ $_{3}$ $_{4}$ > $_{5}$ とし, $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ > $_{5}$ とし, $_{1}$ $_{2}$ $_{3}$ $_{4}$ > $_{5}$ $_{5}$ とし, $_{1}$ $_{2}$ $_{3}$ $_{4}$ > $_{5}$

$$R_F = \lambda_1 w_1^t w_1 + \lambda_2 w_2^t w_2 + \lambda_3 w_3^t w_3 + \lambda_4 w_4^t w_4 + \lambda_5 w_5^t w_5 + \dots$$
(6)

(ここで, tw1はw1はの転置を表す.)

因子決定行列の近似

$$R_F = \lambda_1 w_1^t w_1 + \lambda_2 w_2^t w_2 + \lambda_3 w_3^t w_3 + \lambda_4 w_4^t w_4 + \lambda_5 w_5^t w_5 \cdots (6)$$

仮に $_{1}$ が他の固有値に比べて十分大きいとすれば、 $_{1}$ (6)式の第 $_{2}$ 項以降を無視して、

$$R_F \quad \lambda_1 w_1^{\ t} w_1 \cdot \cdots \cdot (7)$$

と書ける。

因子決定行列の近似

$$w_1 = \begin{bmatrix} w_{1x} \\ w_{1y} \\ w_{1z} \\ w_{1u} \\ w_{1v} \end{bmatrix}$$
 のとき、(7)は以下の(8)のように書ける。
$$R_F \quad \lambda_1 \begin{bmatrix} w_{1x} \\ w_{1y} \\ w_{1z} \\ w_{1z} \\ w_{1u} \\ w_{1v} \end{bmatrix} [w_{1x} \quad w_{1y} \quad w_{1z} \quad w_{1u} \quad w_{1v}] \cdot \cdots \cdot (8)$$

(5)式の右辺

(5)式の右辺は、以下のよう書けることに注意しよう.

$$\begin{bmatrix} a_x^2 & a_x a_y & a_x a_z & a_x a_u & a_x a_v \\ a_x a_y & a_y^2 & a_y a_z & a_y a_u & a_y a_v \\ a_x a_z & a_y a_z & a_z^2 & a_z a_u & a_z a_v \\ a_x a_u & a_y a_u & a_z a_u & a_u^2 & a_u a_v \\ a_x a_v & a_y a_v & a_z a_v & a_u a_v & a_v^2 \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \\ a_z \\ a_u \\ a_v \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z & a_u & a_v \\ a_z & a_u & a_z & a_u \\ a_v \end{bmatrix}$$

主因子法

$$\begin{bmatrix} a_x \\ a_y \\ a_z \\ a_u \\ a_v \end{bmatrix} = \sqrt{\lambda_1} \begin{bmatrix} w_{1x} \\ w_{1y} \\ w_{1z} \\ w_{1u} \\ w_{1v} \end{bmatrix} \quad \text{EFALT},$$

$$\begin{bmatrix} a_x \\ a_y \\ a_z \\ a_u \\ a_v \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z & a_u & a_v \end{bmatrix} = \lambda_1 \begin{bmatrix} w_{1x} \\ w_{1y} \\ w_{1z} \\ w_{1u} \\ w_{1u} \end{bmatrix} \begin{bmatrix} w_{1x} & w_{1y} & w_{1z} & w_{1u} & w_{1v} \end{bmatrix} \quad R_F$$

を得る.以上が主因子法と呼ばれる手法である.

Excelで学ぼう

ファイル:第4章/4 2

4-3 SMC法で共通性を推定

共通性の推定

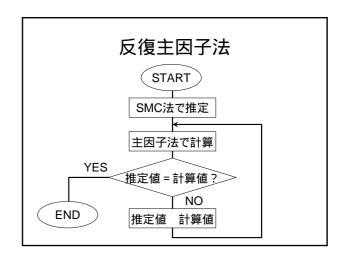
前節では,共通性 $h_x^2, h_y^2, h_z^2, h_u^2, h_v^2$ の推定に適当な値を用いていた.

SMC法は, h_x^2 の推定値として,xを目的変数,x以外の変数を説明変数として重回帰分析を行ったときの,決定係数(重相関係数)を用いる.

 h_y^2 の推定値として,yを目的変数,y以外の変数を説明変数として重回帰分析を行ったときの,決定係数(重相関係数)を用いる.

 $h_{\tau}^{2}, h_{\mu}^{2}, h_{\nu}^{2}$ についても同様.

4-4 1因子モデルから学ぶ反復主因 子法



Excelで学ぼう

ファイル:第4章/4_3,4_4

本日のまとめ

- 主因子法によって,因子負荷量を求める手法を理解した.
- 主因子法による因子負荷量を, Excelを用いて, 計算する方法を理解した.