離散システム論(第9回)

http://coconut.sys.eng.shizuoka.ac.jp/ds/

安藤和敏 (静岡大学工学部)

2006.06.12

- 2.1. 木と道
- 2.2. ベルマン-フォード法

ベルマン-フォード法 (アルゴリズム 1) は、べき乗法の改良版と考えることができる.

アルゴリズム 1 ベルマン-フォード法 (始点を v_0 とする)

入力: ネットワーク $\mathcal{N} = (G = (V, A), l)$.

出力: もしあれば負の長さの有向閉路を、そうでなければ v_0 からその他の各点vへの最短路、及び、最短路長.

- 1: $p(v_0) \leftarrow 0$, $p(u) \leftarrow +\infty$ $(u \in V \setminus \{v_0\})$, $k \leftarrow 1$.
- 2: 各枝 $(v, w) \in A$ に対して、
 - (*) p(w) > p(v) + l(v, w) ならば $p(w) \leftarrow p(v) + l(v, w), \ q(w) \leftarrow v.$
- 3: (i) Step 2 で p の更新 (*) が全くされなければ停止する.
 - (ii) p が更新されたとき,
 - (a) k < n = |V| ならば $k \leftarrow k + 1$ として Step 2 へ戻り、
 - (b) k=n ならば停止する (このとき負の長さの有向閉路が存在する).

ベルマン-フォード法を、始点を $v_0=s$ として図 ??のグラフに対して実行した結果は表 2.1 のようになる. さらに、実行結果を図で表現すると、図 2.1 のようになる.

ただし、Step 2で枝を調べる順序は

sに入る枝, bに入る枝, dに入る枝, eに入る枝, fに入る枝, gに入る枝, hに入る枝

とする. (本当は $Step\ 2$ における枝の選択の順番は任意であるが、べき乗法と対比させる ためにこのような順番で調べてみる.)

表 2.1: ベルマン-フォード法の動き (各自で記入せよ).

		s	b	d	e	f	g	h
	p	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$
	q							
k = 1	p							
	q							
k=2	p							
	q							
k = 3	p							
	q							
k = 4	p							
	q							
k = 5	p							
	q							
k = 6	p							
	q		_				_	_
k=7	p							
	q							

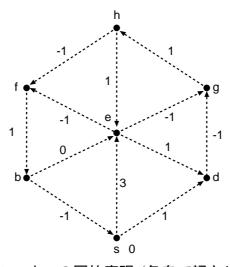


図 2.1: p と q の図的表現 (各自で記入せよ).